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ABSTRACT

The properties of the magnetohydrodynamic
turbulence closure proposed by Widlund et al.
(1998) are discussed for the case of homoge-
neous turbulence decaying in a static magnetic
field (at low magnetic Reynolds numbers). The
model is a Reynolds stress closure, extended
with a transport equation for a dimensionality

anisotropy variable «, which carries informa- -

tion about length scale anisotropy. The model
is shown to be consistent with theory and ex-
periments for both weak and strong magnetic
fields. For the initial linear decay in strong
magnetic fields, it produces the K ~ t~1/2 en-
ergy decay predicted by linear theory. When
nonlinear effects are important, the model pre-
dicts an energy decay K ~ t~!'7 and length
scale evolution in agreement with the experi-
ments of Alemany et al. (1979).

INTRODUCTION

Magnetic fields have found widespread use in
many materials processing applications. In
continuous casting of steel, for example, elec-
trostatic magnetic fields are used to brake and
control the mean flow of liquid metal in the
mold. The magnetic field also causes magnetic
Joule dissipation of turbulence, thus affecting
turbulent transport of heat and mass. At the
same time, turbulent structures tend to be
elongated in the direction of the magnetic field.
Numerical simulations of this and other turbu-
lent magnetohydrodynamic (MHD) flows gen-
erally suffer from the inability of conventional
turbulence models (like the K-¢ model, or a
full Reynolds stress model) to deal with the
large anisotropies of length scales encountered
in MHD turbulence. To improve the situation,
it has been suggested to include information
about length-scale anisotropy in an extended
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Reynolds stress model for MHD applications
(Widlund et al., 1998 and 2000).

The so-called dimensionality tensor, Y;;, was
first introduced by Reynolds (1989) and co-
workers to help describe the effect of rapid
rotation on turbulence. The dimensionality
tensor is defined in physical and spectral space
as
1 82unu§l dV’ kzk]
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where Ez-j = m is the spectral energy tensor,
u,u; the corresponding two-point velocity cor-
relation, and r = X’ — x. While the Reynolds
stress tensor R;; accounts for the kinetic energy
of fluctuations in different directions, the di-
mensionality tensor carries information about
the length-scales in different directions. The
latter information seems vital for a correct
description of magnetic Joule dissipation of
turbulence. For homogeneous turbulence, the
Joule dissipation of turbulent kinetic energy
can, for example, be exactly expressed in terms
of the component of the dimensionality tensor
which is parallel with the magnetic field,
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where n; is a unit direction vector of the mag-
netic field.

Inspired by (1), Widlund et al. (1998) pro-
posed to extend a conventional Reynolds stress
closure with a model transport equation for a
dimensionality anisotropy variable, «, defined
as

_ nijji
T 2K
a = 1/3 for isotropic turbulence, and o = 0
in the limit of 2D turbulence, when turbulent
structures have grown very long in the direc-
tion of the magnetic field. The new variable

0<a<l. (2)



allowed the scalar Joule dissipation to be ex-
pressed exactly as

B2
p="""2Ka, (3)
p

while the anisotropic Joule dissipation tensor
pi; could be modeled with an invariant tensor
function in R;; and a.

An exact transport equation for a can be
derived from the Navier—Stokes equations, in-
cluding magnetic and inertial effects, as well
as effects of mean shear and strain (Widlund
et al., 2000). All terms in the equation require
modeling, however.

MODEL EQUATIONS

Let us consider here the case of homogeneous
shear-free turbulence, initially axisymmetric
about the magnetic field vector. We assume
Cartesian coordinates, such that the magnetic
field vector is in the z3-direction, i.e. B = Bes.
Due to axisymmetry, there is only two in-
dependent Reynolds stress components, R
and Rg3, and the turbulent kinetic energy is
given by K = (2Ry; + Rs3)/2. If we intro-
duce a magnetic time scale 7 = p/(20B?), the
Reynolds stress closure proposed by Widlund
et al. (1998) reduces to

dil?fs = a3 — ge — 133, (4)
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An equation for R;; is redundant, as it can be
computed from K and Rss.

In (4), m33 is a component of a return-
to-isotropy model for the slow pressure-strain
rate term, while

Rss3 9 o [Rss

133 = - <a+10a {K 2]) (8)
is due to an invariant tensor model for the
anisotropy of the Joule dissipation tensor (see
Widlund et al. [1998] for details). Note that
the K equation (5) is exact, as the Joule dissi-
pation term follows from the definition of «.
The first term in (6) is the standard model
of viscous destruction of €. The second term,
modeled in the same spirit, represents mag-
netic destruction,

— Cea

T
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In (7), po is a magnetic (Joule) destruc-
tion term, driving the turbulence towards two-
dimensionality (o — 0). 7, is a “return-to-
isotropy” term due to nonlinear effects, which
tends to restore turbulence to an isotropic
state. We will see that the dynamical proper-
ties of the closure is largely determined by the
properties of py and m,. The simplest models
of these terms are
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This assumes that the nonlinear effects are gov-
erned by a turbulent time scale K/e, and that
the magnitude of the return-to-isotropy term
is proportional to the level of anisotropy. The
magnetic term p, is modeled in analogy with
the destruction terms in the K and ¢ equations.

With one-point closures for ordinary hydro-
dynamic turbulence, an integral length scale
for the turbulence is usually estimated as

K3/2
P

L~

(12)

In the MHD case, length scales are anisotropic,
as magnetic effects will make turbulent struc-
tures grow in the direction of the magnetic
field. In this case we let L be a measure of
the length scale perpendicular to the magnetic
field. L further retains its role as a length scale
related to eddies with turn-over time K /e (this
dual interpretation can be argued convincingly
from a spectral analysis of the magnetic effects
in Fourier space). Comparison between (3) and
scaling laws put forward by other authors, e.g.
Davidson (1997), suggests that

L 2
o (LT.) ’ (19

where L) is a characteristic length scale in
the direction parallel with the magnetic field.
Since o = 1/3 for isotropic turbulence (for
which we assume L = L)), we can thus esti-
mate L in terms of L (for L > L),

L
V3a

MODEL PROPERTIES

The relative importance of magnetic effects can
be characterized in terms of the magnetic in-
teraction parameter N, which can be defined
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as the ratio of the turbulent and the magnetic
time scales,
2
n=IBE (15)
PE
In the limit of large interaction parameters
(N > 1), magnetic dissipation dominates over
viscous dissipation and inertial effects (at least
initially).

For N « 1, magnetic effects are negligi-
ble, and for N = 0 the model equations of
the closure coincide with conventional K-& or
Reynolds stress closures. For homogeneous de-
caying turbulence, these closures predict an
asymptotic energy decay K ~ t™", where n =
1/(Ce2 — 1). We recall that the standard value
Ceo = 1.92 gives n =~ 1.09, for agreement with
experiments on grid generated turbulence.

Large N, and linear decay

For sufficiently large interaction numbers
(N > 1) Joule dissipation dominates, so that
viscous dissipation and nonlinear effects can be
neglected. In a spectral analysis, the evolution
of the spectral energy tensor is then described
by Lehnert’s (1955) linearized equations, and
Moffatt (1967) predicted the asymptotic en-
ergy decay rate K ~ t~1/2 for this regime of
linear decay.

The MHD model equations have analytic so-
lutions for this case, with an asymptotic energy
decay rate given by K ~ t~1/Ce1, The decay
rate is thus controlled by the model coefficient
Cq1 in the magnetic destruction term (11) of
the o equation. By choosing Cy; = 2, the
model is made consistent with the theoretical
predictions. Widlund et al. (2000) used the lin-
earized equations and the concept of rapid dis-
tortion theory (RDT) to compute the exact de-
struction term, for comparison with the model
term (11). Figure 1 shows the ratio u,7/a,
as predicted by RDT and the simple model
(11). A coefficient C,; = 0.8 gives the cor-
rect value for isotropic turbulence (a = 1/3),
while Cy; = 2 gives a good description of the
approach to the 2D limit. The energy decay
and evolution of « predicted by RDT and the
model closure are plotted in Fig. 2, for both
values of Cui. Cyu1 = 0.8 gives better agree-
ment for small times, but a correct asymptotic
energy decay requires Co; = 2. The latter
value is used in the following. Based on the
RDT data in Fig. 1, it should be possible to
device a more accurate higher-order model for
la, but this is beyond the scope of the present

paper.
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Figure 1: The non-dimensional ratio po 7/ as a function of
a, as predicted by RDT and the model term (11) for two
values of the coefficient Cq1.

The predicted integral length scale L can be
shown to evolve as L ~ t(Cea=3/2)/Ca for large
times. It is generally held that a length scale
perpendicular to the magnetic field should not
be affected by the magnetic field. This is ac-
complished by choosing C.,, = 3/2. Further-
more, o ~ t~! for large ¢, which through (14)
suggests that the parallel length scale evolves
as Ly ~ t1/2, as proposed earlier by Davidson
(1997).

Nonlinear decay
For interaction parameters of order unity, the
situation is complicated by the presence of
viscous and nonlinear effects. Even for ini-
tially large interaction parameters, the effec-
tive Joule dissipation rate decreases with time,
as a becomes smaller. We will therefor eventu-
ally reach a point where nonlinear effects can
no longer be neglected (provided there is suf-
ficient energy left). As explained in spectral
terms by Alemany et al. (1979), the nonlinear
decay that follows is due to a balance between
Joule dissipation and nonlinear angular energy
transfer. The situation is illustrated in Fig. 3.
The Joule dissipation term (3) suggests that
an effective time scale of the Joule dissipa-
tion is 7/a, rather than 7. As pointed out
by Sreenivasan and Alboussiere (2000), the ef-
fective Joule time scale and the turbulent time
scale together form a “true” interaction param-
eter. We here define it using variables of the
closure,
2
ne=oE _9BeK N a6
21e PE

Sreenivasan and Alboussieére proposed that the
nonlinear decay is characterized by a constant
N* of order unity.
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Figure 2: Decaying turbulence in the limit of large N, where
Joule dissipation dominates. The graphs show time develop-
ment (7 = p/(20B2)) of turbulent kinetic energy (top) and
anisotropy « (bottom). Solid lines represent the RDT solu-
tion, and dashed lines the analytic solution of the model
equations (5) and (7), for two values of Cq1. (Initially
isotropic turbulence, ag = 1/3.)

In the MHD turbulence closure, angular en-
ergy transfer is represented by the return-to-
isotropy term 7, in the a equation. The behav-
ior of 7, as we approach o = 0 has been found
to have a large impact on the model proper-
ties. In particular, the simple model term (10)
is not sufficient. Its magnitude increases as
decreases, and attains its maximum value for
o = 0. In contrast, the true return term can
be expected to first increase with increasing
anisotropy, but then decrease towards zero as
we approach the 2D limit (o = 0). There are
two important reasons to expect this behavior:

1. 2D dynamics: The dynamics of 2D tur-
bulence is decidedly different from that of
3D turbulence. One can argue that the
spectral triad interactions responsible for
the angular energy transfer should vanish
in the limit of 2D turbulence, where all the
energy is concentrated in the wave number
plane k; = 0.

Magnetic (Joule)
dissipation

Viscous
dissipation

Figure 3: Illustration of the spectral energy distribution for
the general nonlinear case. Joule dissipation is largest in a
cone about an axis parallel with the magnetic field (shaded
region). Viscous dissipation is significant outside the dot-
ted circle, where wavenumbers are large (smallest scales).
Nonlinear inertial mechanisms cause angular energy trans-
fer from the energy-containing region near the k| -plane, to
the region where Joule dissipation is strong.

2. Magnetic surpression of triple corre-
lations: Alemany et al. (1979) have sug-
gested that the triple correlations respon-
sible for nonlinear energy transfer are sur-
pressed by a magnetic field. There are
some evidence to this effect, both from
DNS and experiments.

A rather crude attempt to address the first
item above is to substitute the model term (10)
with a modified version, which is piecewise lin-
ear in «,

£ . 1
Mo = 27 min (C;za i Con [§ — a}) . (17

For small «, this model term behaves as 7, =
Cl,ae/K. It can be shown that this property
reflects the expected balance between angular
energy transfer and Joule dissipation, and re-
produces a constant /N* of order unity for the
nonlinear phase of decay. One can argue that
also the viscous terms in the K and € equa-
tions should be modified in a similar way as
we approach the 2D limit. If we restrict our-
selves to a modification of m,, however, the
asymptotic energy decay rate will depend on
Cl, in (17), as well as Cq1, Ceq and Cep. The
latter three have already been given values to
correctly predict the linear decay, and the con-
ventional non-magnetic case. It is then found
that a value of Cl, = 4.72 reproduces the
asymptotic energy decay rate K ~ ¢t~ 7 found
experimentally by Alemany et al. (1979) for the
nonlinear decay, while the length scales develop
as L ~ %1% and Ly ~ ¢%% for large times.
Regarding the magnetic suppression of
triple correlations, Schumann (1976) found in
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his numerical (DNS) experiments, that the
magnetic field reduces both the angular en-
ergy transfer rate, and the nonlinear inter-
component energy transfer in the Reynolds
stress equations (slow pressure—strain rate in-
teraction). One can argue that also viscous
dissipation is affected, because nonlinear in-
teraction is responsible for the transfer of en-
ergy from larger to smaller scales; Sreenivasan
and Alboussiére (2000) showed that the k=3-
spectra observed in many MHD turbulence ex-
periments are consistent with reduced energy
transfer to the smaller dissipative scales.

Alemany et al. (1979) suggested that the
nonlinear energy transfer rate in a magnetic
field is reduced by a factor (1 + N), with NV
given by (15). The nonlinear energy transfer
rate is usually estimated as ¢/K. Using Ale-
many’s suggestion, the reduced transfer rate is
then fye/K, with

1 o

IN=1TN = avn
In the nonlinear phase of decay, we expect N*
to be constant and of order unity, so that fx ~
a for small a. This means that the return-to-
isotropy term m, gets the desired properties for

small «, if we use the reduced energy transfer
rate in (10),

e (1
T CangK (3 oz) : (19)
If we assume the same reduction is appropriate
for the viscous dissipation terms, the viscous
dissipation in the K equation would be re-
placed by a model term ex = fye, and the
destruction term in the ¢ equation becomes
ge = Ceofne?/K. Note that the closure vari-
able € would no longer directly represent the
viscous dissipation of turbulent kinetic energy,
but it would retain its role for estimates of
time and length scales (K/e and K%/?2/e, re-
spectively) of the energy-containing eddies.

A preliminary analysis of the properties of
the modified MHD closure shows that the re-
duced viscous terms are negligible for large N,
and the nonlinear energy decay is then given
by K ~ t=1/(Cea=1)  f Ceq = 1.5, as pro-
posed earlier, this gives K ~ t~2. A slight
adjustment to Ceo = 1.59 yields the result of
Alemany et al., K ~ t~1'7 and the same length
scale evolution as before.

Ongoing work aims at a better understand-
ing of nonlinear effects, and modeling of them
in a way that addresses the change of dynamics
close to the 2D limit, as well as the expected
magnetic suppression of triple correlations.

(18)
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COMPARISON WITH EXPERIMENTS

The mercury experiments of Alemany et al.
(1979) studied the decay of turbulence down-
stream of a grid, with a magnetic field oriented
in the stream-wise direction. The magnetic
interaction parameter was of order one. Hot
film probes were used to measure the r.m.s. ve-
locity parallel with the magnetic field, w,
and the parallel integral scale, [ (from the
one-dimensional spectrum). The results were
presented using a non-dimensional time scale
Z — Zy =tU/M, where U is the mean velocity,
M = 2 cm is the grid mesh size, Zy = 4 is the
location of the effective origin, and ¢ is time.
For comparing model predictions with ex-
periments, we here use the piecewise linear
model (17) for the return-to-isotropy term 7q;
the alternative model (19) gives similar results
for the graphs shown here. Initial conditions
for the simulation were computed from mea-
sured data in Z—Zy = 2. An ODE solver could
then be run both forwards and backwards in
time, in order to assure a sensible model be-
havior near the effective origin (Z — Zp = 0).
Of the turbulence closure variables, only Rss
can be compared directly with the measured
uﬁ The initial condition for K was chosen to

obtain isotropic turbulence (R33 =~ Rj1) in the
virtual origin. To compute initial conditions
for € and «, we used the scale relations intro-
duced earlier,

3/2
€ = AKL , (20)

1(r0\
-5(5) @

where A is presumably a constant of order
unity. Here the initial parallel length scale
L was taken from the measured [| at Z —
Zy = 2. 'The initial integral length scale
L was then chosen so that backward inte-
gration yields L ~ Lj in the virtual origin,
and the constant A was adjusted to match
the time scales of experiment and simula-
tion. The simulation was made with A =
0.22, and coefficients {Ce2, Cy1, Cea, Cha, Caz}
= {1.92,2,1.5,4.72,0.4}.

The inverse of relations (20) and (21) can be
used to present the simulation results in terms
of the length scales L and L. Figure 4 shows
the decay of the field-parallel Reynolds stress,
and the evolution of length scales, for the case
of U = 20 cm/s and B = 0.25 T. Predictions
with a standard K-¢ model and experimen-
tal data for B = 0 are shown for comparison.




— MHD model

O Exp.,B=025T

1k + Exp.,B=0

----- Standard K-g model

L ' L L L s L L
0.1 0.2 05 1 2 3 5 10 20 30

Z-Z
2 " T ~
p— 0 7
= = MHD model: L d
O Exp.B=025T s
+ Exp.,B=0 b"’//
1F | ..... Standard K-¢ model Q%

o
o

l” L, L” [cm]

o
w

0.2p

L L L L L " " '
0.1 0.2 0.5 1 2 3 5 10 20 30

Figure 4: Comparison of model predictions with experimen-
tal data by Alemany et al. (1979) (U = 20 cm/s, B = 0.25
T). Decay of field-parallel Reynolds stress (above), and evo-
lution of length scales (below). The horizontal axis shows
normalized time (or normalized distance) from the virtual
origin. Predictions with a standard K-e model and exper-
imental data for B = 0 are shown for comparison. The
dash-dotted lines represent the asymptotic power-law be-
havior of the closure.

The Reynolds stress anisotropies are relatively
small, so there is little difference between the
evolution of K, and the individual stress com-
ponents (not shown here). Compared with
the non-magnetic case, the predicted integral
length scale L evolves more slowly in the pres-
ence of a magnetic field, while the parallel scale
L) grows faster.

CONCLUSIONS

In this paper, we have tried to demonstrate
the benefits of including structure and length
scale information in closures for magnetohy-
drodynamic turbulence. For homogeneous tur-
bulence, the proposed Reynolds stress closure
is consistent with theory and available experi-
ments for all values of the magnetic interaction
parameter.

In future work, direct numerical simulations
(DNS) can be of great value for understand-

ing the various nonlinear mechanisms involved.
For accurate predictions in engineering appli-
cations, another large effort will be to include
effects of walls and inhomogeneities in the
models. In contrast to homogeneous turbu-
lence, near-wall turbulence in wall bounded
MHD flows tends to become not only two-
dimensional (long structures in the magnetic
field direction), but also two-component, when
the field-parallel stress component of grow-
ing structures begin to experience damping by
nearby walls.
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